
ISRAEL JOURNAL OF MATHEMATICS, Vol. 22, No. 2, 1975 

:e, S U B S P A C E S  O F  It 

BY 

M. ZIPPIN* 

ABSTRACT 

It is proved that every subspace of l~ which is an ~,.~ space with A close 
enough to 1 is isomorphic to l~. 

A Banach space X is called a ~7,., space (A > 1) if for every  finite 

dimensional subspace  E of X there is a finite dimensional subspace  F of X 

such that E C F  and d(F, 17)<=A (here n = d i m F  and d (A ,B ) ,  the Banach- 

Mazur  distance between the isomorphic spaces A and B, is defined by 

d(A,  B) = inf: {IITII IIT-'ll: T an invertible opera tor  f rom A onto B}). The space 

X is said to be a ~1 space if it is a ~ , . ,  space for  some A > 1. For  the basic 

propert ies  of  ~ ,  spaces and their important  role in the study of the classical 

spaces the reader is referred to [5] and [6]. It is easy to see that every  L,( /z)  

space is a ~ , . ,  space for every  A > 1 but the family of  ~1 spaces is much richer 

than the family of Ll(/z) spaces (see [4]). Even the space l,, in spite of  being a 

very "smal l "  ~ l  space, contains ~ ,  subspaces  which are not isomorphic  to l~. 

Indeed,  as is shown in [3], if {e.} denotes  the unit vector  basis of l, and 
1 xn = e, - ~(e2,+, + e2,.2), then X = span {x,} is a ~.2.~ space for  each e > 0 but 

X is not isomorphic to l,. 

The purpose of this paper  is to show that every  ~7~.~ subspace  of !i is 

isomorphic to I, if A is close enough to 1. More precisely,  

THEOREM. Let X be a subspace of l~ and assume that X is a ~,.~ space with 

A = 1.02. Then X is isomorphic to l~. 

Our main tool is the following recent  result of L. E. Dor, 

PROPOSITION 1 (cf. [1] Theorem A). Let E be a finite dimensional sub- 
n < 2k spaceof l ,  a n d a s s u m e t h a t d ( E , l , ) = A  whereA < Thenthereisaprojection 

P of l, onto E with IIPII--< A [1 - (2 + 2%(1 - A - ' ) ] - ' .  
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We also need 

PROPOSITION 2 (cf. Proposition 1 of [2]). Let 1 <=,t. 0 < 2 and let {xs}~':~ be 
elements o f  l, satisfying 

" ~a,x~ - ' Z  la, I <- <- la, I 
I I I 

[or all sequences {as}F:, of scalars. I[ there is a projection P of  !, onto 

span{xi}}'~, with I[Pii.A-<0, then there are mutually disjoint sets {A~}~'., of  

integers such that [or each j, [IE,~A,xj(i)e, If >= 2 0 - ' -  I, where {e, }]: denotes the 
unit vector basis o f  l,. 

Combining Proposition I and Proposition 2 we get the following 

PROPOSITION 3. Let E be a finite dimensional subspace o[l, ,  let A > 1 satisfy 

the inequality A 2 [ I - ( 2 + 2 t ) ( 1 - ~ - ' ) ] - ' < 2  and let {xj}}'., be a basis of  E 
satisfying 

" ~asx j  A-' Z Ia, I <= <= a, I 
j = l  i i 

for  all sequences a,, a2,- - �9 , a. o[ scalars. Then there exist mutually disjotnt sets 

A , , A 2 , . . .  ,A .  o/ integers such that for each j, 1 <=j <= n, llY,~,,rrj(i)e, - x s  II =< e 

where x ( i )  denote the i-th coordinate of  the element x ~ l ,  and e = 
2 - 2[1 - (2 + 2t)( 1 - Jt ' ) ] , t  -2 

PROOF OF THE TitEOREM. Since X is separable, there is a sequence {X,} of 

finite dimensional subspaces of X such that 

X. CX.+,. X =  0 X. and d(X,,l~'"~)<-A ( d ( n ) =  dimX.) .  
l 

Hence,  for each n there is a basis xT, x. .", .- . ,x~.~ of X. such that 

/<"") ]) ,,"~., t, <.,~) 
la, I 

i = 1  

for  any sequence {a,}~ ~"~ of scalars. It is our  purpose to construct  a sequence 

{s(N)} of integers and a sequence {D(N)} of finite sets of integers where 

D ( N ) C { I , 2 , 3 , . . . , d ( s ( N ) ) }  such that the following two conditions are 
satisfied: 

= J s t N ) l  (*) the countable collection U ,~,~xh rh~D,,~ forms a basis equivalent to 

the unit vector  basis of l, (that is, 

N = I  h ~ _ D ( N )  I / ' 4 - 1  b E D ( N )  
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N where is a constant  > 0 )  and for all scalars a h, rl 

(**) X = span 1,0 s ,,N,~ / X h  /h  E D E N ) ,  
N = I  

These goals will be achieved by a limit process under which we will construct  a 

collection C of e lements  {uo} of l, (not necessari ly of  X)  which have mutually 

disjoint supports ,  have norm I[u, ll = ~,. These elements  will certainly satisfy the 
inequality 

la, F > a,a., e Y. fa, f 
I I I 

for every  m, every  distinct a~, a : , ' . . , a m  and any scalars a~, a 2 , . - . , a m .  The 

process  is done in such a way that for each us there is a basis e lement  x, = x~ ~"~ 

such that I I u , - x ,  II<~ for all ~ and span {x,} = X. The above  inequality 

certainly implies that {x,.} is a basis of X equivalent  to the unit vector  basis. 

Unfortunately,  the notations we use are quite complicated because we have to 

pass to subsequences  many times and we have to reorder  the basis e lements  
. n  n n X,,X2, ' ' ' ,Xd~,,  in some uniform way. 

First note that we may apply Proposition 3 to get for each n, disjoint sets 

AT, A ~ , . . . , A , ~ , j  " of integers such that 

(1) ] ]xT-  ~ xT(i)e,]]<=e. 
l! 

Note  that e = e (3.) ~ 0 as -~ 1. We may certainly assume that A 7 is a finite set. 

Next  we fix n and i, l < i  _-<d(n), and treat the basis e lement  xT. For k > n ,  

Xk D X~ and the basis {x~}r J of X~ is "c lose"  to the usual unit vector  basis of 

l~ ~k). Therefore ,  after  suitable changes of the constants  we can use Proposit ion 

3, with xj replaced by x7 and e~ replaced by x~, to get for each k > n mutually 

disjoint subsets  .,k ..~ ..~ B, , B2 , ' ' ' , B d c . ,  of { l , 2 , ' " , d ( k ) }  such that for  each i, 

1 <-i <= d(n),  there are scalars {bh }h~ ..~ (where bh ..k = b h.~) satisfying 

(2) x, " ~ bhxh.=2--2[l  (2+2~)(1 a -Z) lh - '  /x, 
h ~ R 7  .~ 

where /z = /x  ( h ) ~  0 as h ~ 1. 

Let 

and for k > n let 

y~ = ~ x~(p)ep 
p E A ~  

C~'k={ h EB?'k: ~ /Y~'(P)I-----]}" 
p E A ~  
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Also, for  each k > n and h E C7 'k put 

z~ "i yh(p)e.. 
- - p  n 

i 

Note that z~ 'i depends also on n, but we will omit this additional notational 

complication while bearing in mind the fact that this process is done for fixed n. 
k,i :> 3 Clearly II z h I]=~,andsinceA~, , f lAk ,2=Oifh , /h2,  weget that  z h',k' and z k,,h~ have 

disjoint supports, i.e. ~' z. ' ,(p) ~" zh2(p) = 0 for all p. Also, for  each k > n, 1 < i < 

d(n) and 

h @ C7 "k, Z~"E span{eh}heu~L-.,a7 

and since each AT, l = < i =  < d(n), is a finite set we can select a subsequence 

{k(m)}7._l of integers such that for  each fixed i, 1 <-_iN d(n), the number of 

elements of C7 "k'm' is a constant N7 say, for all m => 1 and there exist elements 

n,i n.i n i 
U l , U 2  , ' "  , l~ Nin in I, such that 

l ~  .i = 1 ~  ~ k ( r a ) , i  
l l l l l m  ,(. q (h  ) 

and, for m_->l and l-<h_-<NT, 

h -- ~q<h) II < ~ 

where 6 > 0 is a given small positive number and q(h) is the h th  smallest 

member  of C7 'k~'~. The above "separa t ion"  process of x7 will be used in the 

sequel for  various values of n and i. We now need several estimates on the 

distances between the elements mentioned above. It follows from (1) and (2) 

that for k > n we get the inequality 

(3) y T -  ~ bhy~, < t x + e + A e .  
h ~ B 7  ,k 

Hence,  we have that 

~-~ l Y T ( P ) - ~  bhY~,(P) l<tz+e+Ae 
p ~ a ?  h ~ a 7  .k 

and, therefore,  the definition of C7 'k ensures that 

1 ~'~ bhy~,ll<tx+e+Ae. 
h E B ~ , k - c 7  ,k 

It follows that for  each k > n 

(4) l[ ~, _--<5(/z y T -  ~. bhy + e + A e )  
h ~ C 7  .k 



114 M. ZIPPIN Israel J. Math., 

and therefore,  in view of (1), we have that 

(5) x T -  ~ b~x~ = < 5 ( / x + e + A e ) + e + A e  
h ciC7 .k 

= 5/z + 6(A + l)e.  

Also, for  m, m '  => 1, if q ( h )  and q ' ( h )  denote  the h-smallest  member  of  C~ "*~') 

and C? 'k('') respectively, then 

k(ml. i  (6) [Izq,h, - -q'k"'"',h, = < .,q,,,'~")"- u~"ll 

+ I l u Z " -  -q,~," ~(" '"", = < 2 &  

Because [lY~,-z~'~{[ =<', the inequality (6) yields the following 

k(m) k(m') (7) x q,h, - x q.,h,]] <= xq,,,~"' - yq,hk"' 

k(m) k(rn), i  R(m').i + lly , ,~,  - z~,~,  I [+  " ' " ' -  

+ ]1~ k f m ' ) . i  k(m') II.~,c,h) - y,c,h,]l + llY k'"'',~ ',h ) - x q'"').(h, 

=<~+2e +26.  

We also have that 

(8) Ilu :'ll -> -3,. 

Let  us now construct  a sequence {s (m)} of integers, a sequence { B ( m ) }  of  finite 

sets of integers and a sequence { C ( m  )}7. =, of collections C ( m  ) of finitely many 

elements of l, as follows. Put s ( 0 ) =  1, B ( 0 ) =  { l , 2 , - . . , d ( s ( 0 ) ) }  and use the 

above process with n = 1 to select the subsequence {k(m)}, to be denoted 

{k(0. m)}, as above. Then put 

Let  s ( l )  = k(0, 1) and put 

c(o)  = U {u ~"}':, ' , .  
iEB(O) 

B(1):{l,2,...,d(s(l)}\ U C[ '~ 
iEB(O) 

repeating the above process for n = s(l) .  Select now a subsequence {k(1,m)} 

of {k(0, m)} with k ( 1 , 1 ) > s ( 1 ) ,  such that for  each i • B ( 1 )  the number of 

elements of C~ ")'k"'") is fixed, N~ ") say, 

q ( h )  , 
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where  q ( h )  is the h - sma l l e s t  integer  in C~ "~*"'"~ and 

q h 

for  all rn _-> I, i E B ( I )  and i =<h -<_N~ ~'~. N o w  put 

C(1)  = 

Nex t  we put s (2) = k ( I ,  l) and 

U {ua m'~}~'--~ ~ .... �9 
i E B ( I )  

B ( 2 ) = { l , 2 , . . . , d ( s ( 2 ) ) } \  0 I,.J C~ ~ 
j = 0  i E B ( j )  
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C ( N  + 1) = I,.J {Uh''N''"}h'--,N ....... , 
i E B ( N + I )  

where  we have  that  k ( N  4- 1, !) > s ( N  + 1) and 

(9) - - . . , h ,  __--<8 for  all 

rn>-_l, i E B ( N + I )  and l = < h ~ N ~  c~*'~ 

We are  now ready  to show that  X is i somorph ic  to l~. First  note  that  

C = U T C ( N )  is a col lec t ion of  e l emen t s  u of  1~ with n o r m  Ilul]_->), and the 

cons t ruc t ion  ensures  that  any  u,, u 2 E C  have  dis joint  suppor t s ,  i.e. 

u, (p)u2(p)  = 0 for  all p. It fo l lows  f r o m  (8) that  for  any  dist inct  u,,  u 2 , . . . ,  u. 

C and any  scalars  a , ,  a z , . . . . a ,  we have  that  

n n n 

gr a,., (10) a , I -  -> --> a S', ]a,I �9 
] I 

H o w e v e r ,  for  each  N, i E B ( N  - I) and I <= h <= N~ ~-'~ (q (h  ) E C~r162 we 

have  by  (9) and (I)  that  

s (N)  
( , 1 )  Xq,h,ll=llu  'N''' -- Zq,.,""'"' 

s(N) , i  s (N )  4- Zq~h~ - y q h  

s (N)  s ( N )  

_-<~ +~+e. 

and 

B ( N  + I ) = { I , 2 , . . . d ( s ( N  + I ) ) } -  (..j I,.J C~ '~''''N''' 
i = f  i ~ B ( j )  

and use  the a b o v e  p roces s  for  n = s(2) to se lect  the col lec t ion C(2).  In general ,  

s ( N  + 1) = k ( N ,  1), 
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We can now put 

D(N) = U C~ ~N-')'`c~, 
iEB(N-,.) 

then show that conditions (*) and (**) are satisfied. Indeed, it follows f rom (10) 

and (11) that for any n and any collection of scalars 

we have that 

02) 

CJ L )  {a ~h~cf( . . . . . .  (N) , 
N = ,  iEB(N-,) 

2 ~ ~ I a~l  
N = ,  i~B(N~,) hEC~(N-I).s(N) 

II N = ,  i~B(N- I )  h~c~(N-I).s(N) 

--> E 2; 
, iEB(N-,) h~Ec~(N-j).m(N) 

hence the collection 

la~I)(�89 

K = 0 {XhS(N)Ih~C?(N-I)'s(N) 
N = I  i E B ( N - I )  

forms in Y = span K a basis equivalent  to the unit vector  basis of  1,. Y is a 

subspace  of X and we would like to show that Y = X. To do so it is certainly 

enough to show that for each x ~ U ~=,Xs,~, with IIxll = 1, inf,~y IIx - yll--< M < 

1, where M is independent  on x. Let  

~ .  d(s(N)) 
X ~ ~ i = 1  aixS(N) 

and assume that Ilxll = 1 (and hence 2f's(N'la,[<-A). Obviously 
N - I  

{1 ,2 , . . . , d ( s (N) ) } \B (N)=  U U c~ ~ 
/ : 1  iEB(j) 

where all the sets appearing in the union are mutually disjoint. Moreover ,  for  

each I<=j<-N-1,  i E B ( j )  and I<-h<-N~(J*I)=N~(N), if q(h) and q'(h) 
denote  the h-smal les t  members  of  C~ ~176 and C~ ~'''~m respectively,  then, by 

(7), we get that 

so+,)_ s~mj<~+2e+28  (13) -..(,) x q.(,) = . 

On the other  hand. for each i ~ B(N) we have. by (5). that 

.4, Irx ,-, 
hEc~(N).s(N+I) 
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Put M = Max {A (~ + 2e + 23), )t (5~ + 6(A + I)e)}, then we have by (13) and (14) 

that 

x - ~ ~ 2 ahx'~"- 2 a,( ~, bhxg 'N§ <=M < I. 
./=l i ~ B ( j -  I) h E C  s i - I  .s( } i E B ( N )  k h ~ _ C ~ ( N ) , s I N §  

This completes the proof of the theorem. 
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